V = 3094.0 (6) Å³

Mo $K\alpha$ radiation

 $0.2 \times 0.2 \times 0.2$ mm

3745 independent reflections

3 standard reflections

frequency: 120 min

intensity decay: 2%

2491 reflections with $I > 2\sigma(I)$

 $\mu = 3.41 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.052$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diiodido- $2\kappa^2 I$ -bis(4-methylpyridine- $1\kappa N$)- μ -{2,2'-[1,3-propanediylbis-(nitrilomethylidyne)]diphenolato- $1\kappa^4 O, N, N', O': 2\kappa^2 O, O'$ nickel(II) zinc(II)

Leyla Tatar Yıldırım,^a* Orhan Atakol^b and Gülten Kavak^c

^aHacettepe University, Department of Physics Engineering, 06800 Beytepe, Ankara, Turkey, ^bAnkara University, Department of Chemistry, Ankara, Turkey, and ^cUniversity of Dicle, Department of Physics, 21280 Divarbakır, Turkey Correspondence e-mail: tatar@hacettepe.edu.tr

Received 24 August 2007; accepted 3 September 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.014 Å; R factor = 0.033; wR factor = 0.075; data-to-parameter ratio = 10.6.

The title compound, $[ZnI_2Ni(C_{17}H_{16}N_2O_2)(C_6H_7N)_2]$, is a heterodinuclear zinc-nickel complex. The Ni^{II} ion is in a distorted octahedral coordination environment formed by two O and two N atoms from a chelating salpd²⁻ ligand [salpd²⁻= N,N'-bis(salicylidene)-1,3-propanediamine, $C_{17}H_{16}N_2O_2$ in the equatorial plane and two N atoms of two methylpyridine ligands (C_6H_7N) in the axial positions. The coordination around the Zn^{II} ion is distorted tetrahedral, with two bridging O atoms of the chelating salpd²⁻ ligand and two I atoms. The average Zn-O and Zn-I distances are 1.986(5) and 2.5327 (11) Å, respectively. The crystal structure is stabilized by weak $C-H \cdots N$ and $C-H \cdots I$ hydrogen bonds.

Related literature

For general background, see: Bertini et al. (1994); Barandika et al. (1999). For related literature, see: Tatar et al. (1999); Atakol, Tatar et al. (1999); Atakol, Arıcı et al. (1999); Svoboda et al. (2001); Arici et al. (2001, 2006); Arici & Aksu (2002); Tatar (2002); Tatar, Atakol & Arıcı (2002); Tatar, Atakol & Ülkü (2002); Colon et al. (2004); Metalobos et al. (2004); Atakol et al. (2006); Yu et al. (2007).

Experimental

Crystal data

[ZnI₂Ni(C₁₇H₁₆N₂O₂)(C₆H₇N)₂] $M_r = 844.45$ Monoclinic, Cc a = 9.3523 (11) Åb = 19.615(3)Å c = 17.4933 (10) Å $\beta = 105.390 \ (12)^{\circ}$

Data collection

Enraf-Nonius TurboCAD-4 diffractometer Absorption correction: ψ scan North et al. (1968) $T_{\min} = 0.506, T_{\max} = 0.511$ 7375 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.075$	$\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$
S = 1.01	$\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$
3745 reflections	Absolute structure: Flack (1983), no
352 parameters	Friedel pairs
2 restraints	Flack parameter: 0.00 (2)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C10-H10B\cdots I1^{i}$ $C22-H22\cdots N2$ $C28-H28\cdots N2$	0.97	3.03	3.981 (10)	166
	0.93	2.61	3.078 (10)	111
	0.93	2.51	3.086 (15)	120

Symmetry code: (i) $x + \frac{1}{2}, y - \frac{1}{2}, z$.

Table 2

Comparision of some crystallographic properties of corresponding dinuclear complexes.

 $M_{\rm c}$ is the central metal ion, $M_{\rm t}$ is the terminal metal ion and R is the ion bonded to the terminal metal ion.

Compound $[M_t R_2 M_c]$	Space group	$M_{\mathrm{c}} \cdots M_{\mathrm{t}} (\mathrm{\mathring{A}})$	$M_{\rm t} - R$ (Å)
(I)	Monoclinic Cc	3.0634 (13)	2.5320 (11)-2.5333 (10)
(II)	Monoclinic Cc	3.0738 (19)	2.3412 (18)-2.3628 (16)
(III)	Monoclinic Cc	3.0695 (11)	2.5303 (9)-2.5424 (9)
(IV)	Monoclinic $P2_1/c$	3.0757 (6)	2.208 (1)-2.208 (1)
(V)	Monoclinik $P2_1/n$	3.0800 (9)	2.3309 (9)-2.3508 (10)
(VI)	Monoclinic $P2_1$	Not given	2.216 (4)-2.200 (4)
(VII)	Orthorhombic $P2_12_12_1$	3.0917 (15)	2.3356 (16)-2.3634 (15)
(VIII)	Orthorhombic $P2_12_12_1$	3.161 (1)	2.2163 (14)-2.2054 (14)
(IX)	Orthorhombic $P2_12_12_1$	3.1464 (16)	2.5373 (14)-2.5527 (14)
(X)	Triclinic $P\overline{1}$	3.5301 (8)	2.3430 (10)-2.325 (2)
(XÍ)	Triclinic $P\overline{1}$	3.4859 (7)	2.320 (2)-2.324 (2)

Notes: (II) [ZnBr₂Ni(salpd²⁻)(DMF)₂] (Artcı *et al.*, 2001); (III) [ZnI₂Ni(salpd²⁻)(DMF)] (Tatar, 2002); (IV) [ZnCl₂Cu(salpd²⁻)] (Tatar *et al.*, 1999); (V) [ZnBr₂Cu(LDMH₂)-(piperidine)] (Svoboda *et al.*, 2001); (VI) [ZnCl₂Zn(salpd²⁻)(MeOH)] (Atakol, Tatar *et* al., 1999); (VII) [ZnBr₂Ni(salpd²⁻)(DMF)] (Tatar, Atakol & Arici, 2002); (VIII) [ZnCl₂Zn(salpd²⁻)(DMF)] (Tatar, Atakol & Ülkü, 2002); (IX) [ZnI₂Zn(salpd²⁻)(DMF)] (Arici & Aksu, 2002); (X) [HgCl₂Cu(salpd²⁻)] (Atakol, Arici *et al.*, 1999); (X1) [HgCl₂Ni(salpd²⁻)] (Arici *et al.*, 2006). salpd²⁻ = N_N -bis(salicylidene)-1,3-propanediamine $(C_{17}H_{16}N_2O_2)$, LDMH₂ = N,N'-bis(salicylidene)-2,2'-dimethyl-1,3-propanediamine $(C_{19}H_{22}N_2O_2)$, DMF = dimethylformamide (C_3H_7NO) , piperidine $(C_5H_{11}N)$, methylpyridine (C₆H₇N).

metal-organic compounds

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Partial support of this work by Hacettepe University Scientific Research Department (project No. 00.01.602.003) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2490).

References

- Arıcı, C. & Aksu, M. (2002). Anal. Sci. 18, 727-728.
- Arici, C., Svoboda, I., Sari, M., Atakol, O. & Fuess, H. (2001). Acta Cryst. C57, 31–32.
- Arner, C., Ülkü, D., Atakol, O. & Tahir, M. N. (2006). Cryst. Res. Technol. 41, 204–208.
- Atakol, O., Arıcı, C., Tahir, M. N., Kenar, A. & Ülkü, D. (1999). Acta Cryst. C55, 1416–1418.

- Atakol, O., Boca, R., Ercan, I., Ercan, F., Fuess, H., Haase, W. & Herschel, R. (2006). Chem. Phys. Lett. 423, 192–196.
- Atakol, O., Tatar, L., Akay, M. A. & Ülkü, D. (1999). Anal. Sci. 15, 199–200. Barandika, M. G., Cortes, R., Lezama, L., Urtiaga, M. K., Arriortua, M. I. &
- Rojo, T. (1999). J. Chem. Soc. Dalton Trans. pp. 2971–2976.
- Bertini, I., Gray, H. B., Lippard, S. J. & Valentine, J. S. (1994). Bioinorganic Chemistry, pp. 37–102. Mill Valley: University Science Books.
- Colon, M. L., Qian, S. Y., Vanderveer, D. & Bu, X. R. (2004). Inorg. Chim. Acta, 357, 83–88.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Harms, K. & Wocadlo, S. (1995). *XCAD4*. University of Marburg, Germany. Metalobos, J. S., Gacia-Deibe, A. M., Fondo, M., Navarro, D. & Bermejo, M. R.
- (2004). Inorg. Chem. Commun. 7, 311–314.
 North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Svoboda, I., Arici, C., Nazir, H., Durmus, Z., Atakol, O. & Fuess, H. (2001). Acta Cryst. E57, m584–m586.
- Tatar, L. (2002). Acta Cryst. E58, m231-m233.
- Tatar, L., Atakol, O. & Arici, C. (2002). Acta Cryst. E58, m154-m156.
- Tatar, L., Atakol, O., Ülkü, D. & Aksu, M. (1999). Acta Cryst. C55, 923-925.
- Tatar, L., Atakol, O. & Ülkü, D. (2002). Acta Cryst. E58, m83-m85.
- Yu, T., Zhang, K., Zhao, Y., Yang, C., Zhang, H., Fan, D. & Dong, W. (2007). *Inorg. Chem. Commun.* 10, 401–403.

Acta Cryst. (2007). E63, m2489-m2490 [doi:10.1107/S1600536807043061]

Diiodido- $2\kappa^2 I$ -bis(4-methylpyridine- $1\kappa N$)- μ -{2,2'-[1,3propanediylbis(nitrilomethylidyne)]diphenolato- $1\kappa^4 O$,N,N',O': $2\kappa^2 O$,O'}nickel(II)zinc(II)

L. Tatar Yildirim, O. Atakol and G. Kavak

Comment

Zinc^{II} ion is the first in a row of essential rare elements for living beings. It has been recognized to be an activator for more than 120 hydrolytic enzymes. Nickel, which exists extremely in living organism, has allergic and cancerogen effects on skin and organism (Bertini *et al.*, 1994). Oxygen-bridged polynuclear complexes of transition series are of interest because of their magnetic properties (Barandika *et al.*, 1999; Atakol *et al.*, 2006) and their structures (Colon *et al.*, 2004; Metalobos *et al.*, 2004; Yu *et al.*, 2007). Dinuclear metal complexes on Schiff-base ligands have been the subject on considerable interest in our laboratory, *e.g.* [ZnCl₂Cu(salpd²⁻)] (Tatar *et al.*, 1999); [ZnCl₂Zn(salpd²⁻)(MeOH)] (Atakol, Tatar *et al.*, 1999); [HgCl₂Cu(salpd²⁻)] (Atakol, Arıcı *et al.*, 1999); [ZnBr₂Cu(LDMH₂)(piperidine)] (Svoboda *et al.*, 2001); [ZnBr₂Ni(salpd²⁻)(dmf)₂] (Arıcı *et al.*, 2001); [ZnBr₂Ni(salpd²⁻)(dmf)₂] (Arıcı *et al.*, 2001); [ZnBr₂Ni(salpd²⁻)(dmf)] (Tatar, Atakol & Arıcı, 2002); [ZnCl₂Zn(salpd²⁻)(dmf)] (Tatar, Atakol & Arıcı, 2002); [ZnCl₂Zn(salpd²⁻)(dmf)] (Arıcı *et al.*, 2006). We describe here the structure of a new heteronuclear dimeric complex, [ZnI₂Ni(salpd²⁻)(methyl pyridine)₂]. Where salpd²⁻= *N*,*N*-bis(salicylidene)-1,3-propanediamine (C₁₇H₁₆N₂O₂), LDMH₂ = *N*,*N*-bis(salicylidene)-2,2'-dimethyl-1, 3-propanediamine (C₁₉H₂₂N₂O₂), dmf = dimethylformamide (C₃H₇NO), piperidine (C₅H₁₁N), methyl pyridine (C₆H₇N).

In the title complex (Fig. 1), the Ni^{II} ion is in a distorted octahedral coordination environment, formed by two O and N atoms from chelating salpd^{2–} ligand in the equatorial plane [Ni—O1=2.038 (5), Ni—O2=2.029 (5), Ni—N1=2.016 (7) and 2.021 (6) Å] and two N atoms of two symmetry-related methyl pyridine ligands in the axial positions [Ni—N3=2.177 (6) and Ni—N4= 2.214 (7) Å]. The bond angles around the Ni atom range between 79.52 (19) and 100.1 (3)°. The distance of atom Ni from the O1/O2/N1/N2 mean plane is 0.0050 (10) Å. The equatorial plane (O1/O2/N1/N2) is almost perpendicular of the (N3/Ni/N4) plane, dihedral angle between them is 89 (2)°.

The coordination around the Zn^{II} ion is distorted tetrahedral, with two bridging O atoms of the chelating salpd²⁻ ligand [Zn-O1=1.985 (5) and Zn-O2=1.987 (5) Å] and two iodine atoms. The bond angles around the Zn atom range between 81.9 (2) and 116.49 (16)°. The planes Zn/O1/Ni/O2 and I1/Zn/I2 are almast perpendicular each other, dihedral angle between these two plane is 88.06 (13)°.

The six-membered chelate ring (Ni, N1, C8, C9, C10, N2) adopts a boat conformation, indicated by the endocyclic torsion angles and by the deviations of *para*-positioned boat atoms Ni 0.0552 (10)Å and C9 0.713 (11)Å from the mean plane through N1, N2, C8 and C10. The crystal structure is stabilized by weak hydrogen bonds (Table 1). The moecule has an intermolecular hydrogen bonding set involving the two molecules: $[C10-H10B\cdots I1^{i}]$ (symmetry code: (i) x + 1/2, y - 1/2, y

1/2, z). The molecule also has two intramolecular hydrogen bonds between the N atoms and the phenyl hydrogen atoms: [C22—H22…N2] and [C28—H28…N2].

A comparison of the space group, $M_c \cdots M_t$ and $M_t - R$ distances are given in Table 2 for the similar oxygen-bridged dinuclear complexes reported previously. Where M_c (Cu, Zn, Ni) central metal ion, M_t (Zn, Hg) terminal metal ion and R (Cl, Br, I) is the ion which bonded to terminal metal ion. The distances from the Zn ion to I ions are longer than the distances from Zn and Hg ions to Cl and Br ions as given in the table 2.

Experimental

Ammonia solution (30 ml) was added to a solution of bis(N,N)-salicylidene)-1,3-propanediamine (0.565 g, 2 mmol) in hot ethanol (75 ml) and mixture heated to boiling. A solution of NiCl₂·2H₂O (0.475 g, 2 mmol) in hot water (30 ml) was then added and the resulting mixture set aside. After 2 h, the light-green nickel complex was filtered off and dried at 413 K for 4 h. This complex (0.338 g, 1 mmol) was dissolved in hot dioxane (80 ml). 4-methylpyridine (0.7 ml) was added to this solution followed by ZnI₂ (0.320 g, 1 mmol) in hot methanol (10 ml). This resulting mixture was set aside for 4 d and the light-pink crystals which formed were filtered off and dried in air.

Refinement

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

$\label{eq:limit} Diiodido-2\kappa 21-bis(4-methylpyridine-1\kappa N)-\mu-\{2,2'-[1,3-propanediylbis~(nitrilomethylidyne)] diphenolato-1\kappa 4O, N, N', O': 2\kappa 2O, O'\}nickel(II)zinc(II)$

 Crystal data

 $[ZnI_2Ni(C_{17}H_{16}N_2O_2)(C_6H_7N)_2]$
 $M_r = 844.45$
 $M_r = 844.45$

 Monoclinic, Cc

 Mall symbol: C -2yc

 Cell parameters

 $F_{000} = 1648$ $D_x = 1.813 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections

a = 9.3523 (11) Å	$\theta = 10.8 - 18.2^{\circ}$
<i>b</i> = 19.615 (3) Å	$\mu = 3.41 \text{ mm}^{-1}$
c = 17.4933 (10) Å	T = 293 (2) K
$\beta = 105.390 \ (12)^{\circ}$	Prism, light pink
V = 3094.0 (6) Å ³	$0.2 \times 0.2 \times 0.2$ mm
Z = 4	

Data collection

Enraf–Nonius TurboCAD-4 diffractometer	$\theta_{max} = 28.0^{\circ}$
non–profiled ω scans	$\theta_{\min} = 3.0^{\circ}$
Absorption correction: ψ scan North <i>et al.</i> (1968)	$h = -12 \rightarrow 11$
$T_{\min} = 0.506, \ T_{\max} = 0.511$	$k = -25 \rightarrow 25$
7375 measured reflections	$l = 0 \rightarrow 23$
3745 independent reflections	3 standard reflections
2491 reflections with $I > 2\sigma(I)$	every 120 min
$R_{\rm int} = 0.052$	intensity decay: 2%

Refinement

Refinement on F^2	Hydrogen site location: geomt
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.033$	$w = 1/[\sigma^2(F_o^2) + (0.0323P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.075$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.01	$\Delta \rho_{max} = 0.48 \text{ e } \text{\AA}^{-3}$
3745 reflections	$\Delta \rho_{min} = -0.49 \text{ e } \text{\AA}^{-3}$
352 parameters	Extinction correction: none
2 restraints	Absolute structure: Flack (1983), no Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.00 (2)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|--|

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
I1	0.73246 (8)	0.54913 (3)	0.50165 (4)	0.0737 (2)
I2	0.45922 (6)	0.38306 (5)	0.39646 (4)	0.0825 (3)
N3	1.1124 (6)	0.4104 (3)	0.5796 (4)	0.0402 (15)
N4	0.8329 (7)	0.2347 (4)	0.4816 (5)	0.0523 (17)
C17	0.9014 (7)	0.3837 (4)	0.3684 (4)	0.0339 (15)
C6	0.8512 (8)	0.3134 (4)	0.6975 (5)	0.0448 (19)
C1	0.7703 (8)	0.3564 (4)	0.6384 (5)	0.0418 (18)
N1	1.0419 (7)	0.2727 (4)	0.6372 (4)	0.0497 (17)
C16	0.8181 (8)	0.4269 (5)	0.3089 (5)	0.046 (2)
H16	0.7415	0.4525	0.3191	0.055*
N2	1.1280 (7)	0.2918 (3)	0.4796 (5)	0.0469 (16)
C10	1.2571 (10)	0.2511 (5)	0.5233 (6)	0.066 (3)
H10A	1.3434	0.2653	0.5064	0.079*
H10B	1.2385	0.2036	0.5089	0.079*
C15	0.8466 (10)	0.4322 (5)	0.2361 (5)	0.054 (2)
H15	0.7889	0.4612	0.1981	0.065*
C12	1.0187 (8)	0.3464 (4)	0.3498 (5)	0.0416 (18)
C2	0.6478 (9)	0.3922 (5)	0.6507 (5)	0.050 (2)
H2	0.5916	0.4202	0.6112	0.06*
C7	0.9816 (8)	0.2741 (4)	0.6944 (5)	0.047 (2)
H7	1.0249	0.2474	0.7384	0.057*
C8	1.1750 (9)	0.2272 (5)	0.6478 (7)	0.072 (3)
H8A	1.1435	0.1833	0.6238	0.087*
H8B	1.2192	0.22	0.704	0.087*
C14	0.9603 (10)	0.3952 (5)	0.2184 (5)	0.059 (2)
H14	0.9782	0.3984	0.1687	0.071*
C13	1.0462 (9)	0.3532 (5)	0.2763 (5)	0.050 (2)
H13	1.1242	0.329	0.2656	0.061*
C11	1.1229 (8)	0.3050 (4)	0.4076 (6)	0.050 (2)
H11	1.1977	0.2851	0.3892	0.059*
C5	0.8103 (11)	0.3083 (5)	0.7696 (5)	0.060 (2)
Н5	0.8647	0.2802	0.8097	0.072*
C21	1.2878 (9)	0.4929 (5)	0.5621 (5)	0.055 (2)
H21	1.3415	0.5107	0.5289	0.066*
C24	0.7084 (11)	0.2176 (5)	0.4993 (8)	0.075 (3)
H24	0.6758	0.2456	0.5342	0.09*
C20	1.3033 (9)	0.5210 (5)	0.6369 (5)	0.050 (2)
С9	1.2916 (9)	0.2572 (6)	0.6106 (7)	0.074 (3)
H9A	1.3042	0.3051	0.6246	0.089*
H9B	1.3855	0.2347	0.6336	0.089*
C22	1.1943 (8)	0.4396 (4)	0.5373 (5)	0.0465 (19)
H22	1.1871	0.4223	0.487	0.056*
C19	1.2176 (9)	0.4922 (5)	0.6806 (5)	0.054 (2)
H19	1.2203	0.51	0.7302	0.065*
C3	0.6112 (11)	0.3852 (5)	0.7228 (6)	0.065 (3)
	- (-)			

H3	0.5304	0.409	0.7308	0.079*
C18	1.1265 (9)	0.4369 (5)	0.6519 (5)	0.054 (2)
H18	1.0731	0.4174	0.6842	0.065*
C26	0.6544 (10)	0.1222 (5)	0.4138 (5)	0.054 (2)
C23	1.4028 (13)	0.5818 (7)	0.6642 (7)	0.088 (4)
H23A	1.3432	0.6214	0.6655	0.132*
H23B	1.4627	0.5894	0.6282	0.132*
H23C	1.4657	0.5732	0.7163	0.132*
C4	0.6915 (13)	0.3442 (6)	0.7816 (6)	0.073 (3)
H4	0.6663	0.3405	0.8294	0.088*
C27	0.7775 (14)	0.1392 (7)	0.3926 (8)	0.102 (3)
H27	0.8074	0.1129	0.3554	0.123*
C25	0.6249 (11)	0.1618 (6)	0.4700 (7)	0.075 (3)
H25	0.5447	0.1509	0.4897	0.091*
C28	0.8598 (14)	0.1951 (7)	0.4255 (8)	0.109 (5)
H28	0.9412	0.2061	0.4069	0.131*
C29	0.5603 (11)	0.0619 (5)	0.3769 (7)	0.075 (3)
H29A	0.4888	0.0524	0.406	0.112*
H29B	0.6226	0.0228	0.3784	0.112*
H29C	0.5097	0.0723	0.3228	0.112*
Zn	0.71340 (8)	0.42196 (4)	0.47615 (5)	0.0380 (2)
Ni	0.97304 (9)	0.32289 (5)	0.53338 (6)	0.0385 (2)
O2	0.8738 (5)	0.3799 (3)	0.4371 (3)	0.0403 (12)
01	0.8033 (5)	0.3648 (3)	0.5702 (3)	0.0394 (12)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.1176 (5)	0.0392 (3)	0.0708 (4)	0.0039 (4)	0.0364 (4)	-0.0027 (3)
I2	0.0421 (3)	0.1351 (7)	0.0646 (4)	-0.0282 (4)	0.0040 (3)	-0.0020 (4)
N3	0.034 (3)	0.036 (4)	0.050 (4)	0.003 (3)	0.011 (3)	0.000 (3)
N4	0.046 (4)	0.043 (4)	0.069 (5)	-0.007 (3)	0.015 (3)	-0.002 (4)
C17	0.033 (3)	0.034 (4)	0.039 (4)	-0.007 (3)	0.015 (3)	-0.006 (3)
C6	0.048 (4)	0.041 (5)	0.044 (5)	-0.006 (4)	0.010 (4)	0.003 (4)
C1	0.036 (4)	0.039 (4)	0.053 (5)	-0.012 (3)	0.016 (4)	-0.013 (4)
N1	0.045 (3)	0.043 (4)	0.058 (4)	0.000 (3)	0.008 (3)	0.013 (3)
C16	0.038 (4)	0.057 (5)	0.041 (5)	-0.008 (4)	0.007 (3)	-0.009 (4)
N2	0.034 (3)	0.037 (4)	0.074 (5)	0.005 (3)	0.021 (3)	0.003 (3)
C10	0.057 (5)	0.052 (6)	0.094 (8)	0.016 (5)	0.029 (5)	0.010 (5)
C15	0.051 (5)	0.062 (6)	0.045 (5)	-0.015 (4)	0.006 (4)	0.004 (4)
C12	0.040 (4)	0.043 (5)	0.042 (4)	-0.013 (4)	0.010 (3)	-0.016 (4)
C2	0.047 (4)	0.051 (6)	0.053 (5)	0.001 (4)	0.016 (4)	0.008 (4)
C7	0.044 (4)	0.041 (5)	0.055 (5)	-0.004 (4)	0.010 (4)	0.016 (4)
C8	0.056 (6)	0.061 (6)	0.102 (8)	0.017 (5)	0.025 (5)	0.049 (6)
C14	0.058 (5)	0.079 (7)	0.045 (5)	-0.018 (5)	0.023 (4)	-0.011 (5)
C13	0.043 (4)	0.061 (6)	0.051 (5)	-0.011 (4)	0.019 (4)	-0.023 (4)
C11	0.033 (4)	0.046 (5)	0.074 (6)	-0.011 (3)	0.022 (4)	-0.020 (5)
C5	0.073 (6)	0.061 (6)	0.048 (5)	-0.005 (5)	0.017 (4)	0.010 (4)

C21	0.049 (5)	0.060 (6)	0.058 (6)	-0.014 (4)	0.020 (4)	0.002 (5)
C24	0.064 (6)	0.056 (6)	0.120 (9)	-0.015 (5)	0.049 (6)	-0.020(7)
C20	0.045 (4)	0.051 (5)	0.049 (5)	-0.009 (4)	0.002 (4)	-0.006 (4)
C9	0.038 (4)	0.066 (7)	0.116 (9)	0.020 (4)	0.015 (5)	0.033 (6)
C22	0.053 (5)	0.040 (5)	0.045 (4)	-0.006 (4)	0.011 (4)	0.002 (4)
C19	0.055 (5)	0.063 (6)	0.043 (5)	-0.007 (4)	0.009 (4)	-0.014 (4)
C3	0.080 (6)	0.062 (7)	0.068 (6)	0.008 (5)	0.042 (5)	0.003 (5)
C18	0.048 (4)	0.062 (6)	0.053 (5)	-0.009 (4)	0.017 (4)	0.001 (4)
C26	0.060 (5)	0.040 (5)	0.061 (5)	-0.021 (4)	0.016 (4)	-0.004 (4)
C23	0.088 (7)	0.089 (9)	0.079 (8)	-0.046 (7)	0.010 (6)	-0.027 (7)
C4	0.099 (8)	0.077 (8)	0.055 (6)	-0.010 (6)	0.039 (6)	0.008 (5)
C27	0.104	0.113 (11)	0.111	-0.057 (7)	0.065 (5)	-0.058 (8)
C25	0.059 (5)	0.068 (7)	0.111 (9)	-0.024 (5)	0.041 (6)	-0.027 (6)
C28	0.117 (9)	0.108 (10)	0.134 (11)	-0.074 (8)	0.089 (9)	-0.071 (9)
C29	0.072 (6)	0.061 (7)	0.083 (7)	-0.021 (5)	0.005 (5)	0.005 (5)
Zn	0.0342 (4)	0.0389 (5)	0.0400 (5)	0.0034 (4)	0.0084 (4)	0.0014 (4)
Ni	0.0336 (4)	0.0344 (5)	0.0477 (6)	0.0013 (4)	0.0108 (4)	0.0022 (4)
O2	0.037 (2)	0.047 (3)	0.039 (3)	0.007 (2)	0.011 (2)	0.001 (2)
O1	0.040 (3)	0.046 (3)	0.034 (3)	0.001 (2)	0.013 (2)	0.008 (2)

Geometric parameters (Å, °)

I1—Zn	2.5320 (11)	С13—Н13	0.93
I2—Zn	2.5333 (10)	C11—H11	0.93
N3—C22	1.328 (10)	C5—C4	1.377 (15)
N3—C18	1.341 (11)	С5—Н5	0.93
N3—Ni	2.177 (6)	C21—C22	1.358 (11)
N4—C24	1.325 (11)	C21—C20	1.392 (12)
N4—C28	1.326 (12)	C21—H21	0.93
N4—Ni	2.214 (7)	C24—C25	1.363 (13)
C17—O2	1.296 (9)	C24—H24	0.93
C17—C16	1.406 (11)	C20—C19	1.368 (13)
C17—C12	1.426 (10)	C20—C23	1.509 (13)
C6—C1	1.392 (11)	С9—Н9А	0.97
C6—C5	1.416 (12)	С9—Н9В	0.97
C6—C7	1.456 (11)	С22—Н22	0.93
C1—O1	1.319 (9)	C19—C18	1.389 (12)
C1—C2	1.408 (11)	С19—Н19	0.93
N1—C7	1.272 (10)	C3—C4	1.363 (15)
N1—C8	1.503 (11)	С3—Н3	0.93
N1—Ni	2.016 (7)	C18—H18	0.93
C16—C15	1.372 (12)	C26—C25	1.339 (14)
C16—H16	0.93	C26—C27	1.341 (13)
N2—C11	1.274 (11)	C26—C29	1.513 (12)
N2—C10	1.479 (11)	С23—Н23А	0.96
N2—Ni	2.021 (6)	С23—Н23В	0.96
С10—С9	1.480 (16)	С23—Н23С	0.96
C10—H10A	0.97	C4—H4	0.93
C10—H10B	0.97	C27—C28	1.376 (15)

C15—C14	1.390 (13)	С27—Н27	0.93
С15—Н15	0.93	С25—Н25	0.93
C12—C13	1.383 (11)	C28—H28	0.93
C12—C11	1 452 (13)	С29—Н29А	0.96
C2—C3	1.398 (12)	C29—H29B	0.96
С2—Н2	0.93	C29—H29C	0.96
С7—Н7	0.93	Zn—O1	1 985 (5)
C8—C9	1 528 (13)	Zn—O2	1 987 (5)
C8—H8A	0.97	Zn—Ni	3,0634(12)
C8—H8B	0.97	Ni—O2	2.029(5)
C14—C13	1 385 (14)	Ni—O1	2.038(5)
C14—H14	0.93		2.000 (0)
C_{22} N2 C_{12}	115 ((7)	N2 C22 U22	1175
C22-N3-C18	115.6 (/)	N3-C22-H22	117.5
C22—N3—Ni	120.7 (5)	C21—C22—H22	117.5
C18 - N3 - N1	123.7 (5)	C20-C19-C18	121.1 (8)
C24—N4—C28	112.1 (8)	С20—С19—Н19	119.5
C24—N4—N1	124.3 (7)	C18—C19—H19	119.5
C28—N4—Ni	123.5 (6)	C4—C3—C2	121.4 (9)
O2—C17—C16	120.9 (7)	С4—С3—Н3	119.3
O2—C17—C12	122.4 (7)	С2—С3—Н3	119.3
C16—C17—C12	116.7 (7)	N3—C18—C19	122.7 (8)
C1—C6—C5	118.8 (8)	N3—C18—H18	118.6
C1—C6—C7	126.1 (7)	C19—C18—H18	118.6
C5—C6—C7	115.0 (8)	C25—C26—C27	114.7 (9)
O1—C1—C6	122.4 (7)	C25—C26—C29	123.9 (8)
O1—C1—C2	118.1 (7)	C27—C26—C29	121.4 (9)
C6—C1—C2	119.5 (7)	C20—C23—H23A	109.5
C7—N1—C8	116.2 (7)	C20—C23—H23B	109.5
C7—N1—Ni	126.6 (6)	H23A—C23—H23B	109.5
C8—N1—Ni	117.2 (6)	C20—C23—H23C	109.5
C15-C16-C17	121.8 (8)	H23A—C23—H23C	109.5
C15-C16-H16	119.1	H23B—C23—H23C	109.5
С17—С16—Н16	119.1	C3—C4—C5	119.4 (9)
C11—N2—C10	115.6 (7)	C3—C4—H4	120.3
C11—N2—Ni	123.7 (6)	C5—C4—H4	120.3
C10—N2—Ni	120.7 (6)	C26—C27—C28	120.5 (10)
N2-C10-C9	114.5 (8)	С26—С27—Н27	119.7
N2-C10-H10A	108.6	С28—С27—Н27	119.7
C9—C10—H10A	108.6	C26—C25—C24	122.2 (9)
N2-C10-H10B	108.6	С26—С25—Н25	118.9
C9—C10—H10B	108.6	С24—С25—Н25	118.9
H10A—C10—H10B	107.6	N4—C28—C27	125.5 (9)
C16—C15—C14	121.0 (9)	N4—C28—H28	117.2
С16—С15—Н15	119.5	С27—С28—Н28	117.2
С14—С15—Н15	119.5	С26—С29—Н29А	109.5
C13—C12—C17	120.5 (8)	С26—С29—Н29В	109.5
C13—C12—C11	116.4 (7)	H29A—C29—H29B	109.5
C17—C12—C11	122.9 (7)	С26—С29—Н29С	109.5
C3—C2—C1	119.5 (8)	H29A—C29—H29C	109.5

C3—C2—H2	120.2	H29B—C29—H29C	109.5
C1—C2—H2	120.2	O1-Zn-O2	81.9 (2)
N1—C7—C6	126.2 (8)	O1— Zn — $I1$	114.59 (15)
N1—C7—H7	116.9	O2—Zn—I1	116.48 (16)
С6—С7—Н7	116.9	01—Zn—I2	114.53 (15)
N1—C8—C9	112.4 (7)	O2—Zn—I2	111.69 (15)
N1—C8—H8A	109.1	I1—Zn—I2	113.93 (4)
С9—С8—Н8А	109.1	O1—Zn—Ni	41.06 (13)
N1—C8—H8B	109.1	O2—Zn—Ni	40.81 (15)
С9—С8—Н8В	109.1	I1—Zn—Ni	123.69 (4)
H8A—C8—H8B	107.9	I2—Zn—Ni	122.37 (4)
C13—C14—C15	118.5 (8)	N1—Ni—N2	100.1 (3)
C13—C14—H14	120.7	N1—Ni—O2	169.6 (2)
C15—C14—H14	120.7	N2—Ni—O2	90.3 (2)
C12—C13—C14	121.5 (8)	N1—Ni—O1	90.1 (2)
С12—С13—Н13	119.3	N2—Ni—O1	169.8 (3)
C14—C13—H13	119.3	O2—Ni—O1	79.52 (19)
N2—C11—C12	130.1 (7)	N1—Ni—N3	91.9 (3)
N2—C11—H11	115	N2—Ni—N3	88.8 (2)
C12—C11—H11	115	O2—Ni—N3	88.3 (2)
C4—C5—C6	121.3 (9)	O1—Ni—N3	90.3 (2)
С4—С5—Н5	119.4	N1—Ni—N4	90.0 (3)
С6—С5—Н5	119.4	N2—Ni—N4	89.6 (3)
C22—C21—C20	120.2 (8)	O2—Ni—N4	90.0 (3)
C22—C21—H21	119.9	O1—Ni—N4	91.0 (2)
C20—C21—H21	119.9	N3—Ni—N4	177.7 (3)
N4—C24—C25	124.5 (9)	N1—Ni—Zn	129.8 (2)
N4—C24—H24	117.8	N2—Ni—Zn	130.1 (2)
С25—С24—Н24	117.8	O2—Ni—Zn	39.77 (14)
C19—C20—C21	115.5 (8)	O1—Ni—Zn	39.77 (13)
C19—C20—C23	123.6 (8)	N3—Ni—Zn	88.04 (16)
C21—C20—C23	120.8 (8)	N4—Ni—Zn	91.72 (18)
С10—С9—С8	115.1 (9)	C17—O2—Zn	130.5 (5)
С10—С9—Н9А	108.5	C17—O2—Ni	130.0 (5)
С8—С9—Н9А	108.5	Zn—O2—Ni	99.4 (2)
С10—С9—Н9В	108.5	C1—O1—Zn	132.2 (5)
С8—С9—Н9В	108.5	C1—O1—Ni	128.6 (5)
Н9А—С9—Н9В	107.5	Zn—O1—Ni	99.2 (2)
N3—C22—C21	124.9 (8)		
C5—C6—C1—O1	178.7 (7)	C18—N3—Ni—O2	126.5 (6)
C7—C6—C1—O1	1.7 (13)	C22—N3—Ni—O1	-135.4 (6)
C5—C6—C1—C2	-1.8 (12)	C18—N3—Ni—O1	47.0 (6)
C7—C6—C1—C2	-178.8 (7)	C22—N3—Ni—N4	-12 (6)
O2-C17-C16-C15	179.3 (7)	C18—N3—Ni—N4	171 (6)
C12—C17—C16—C15	0.9 (11)	C22—N3—Ni—Zn	-95.7 (5)
C11—N2—C10—C9	158.8 (8)	C18—N3—Ni—Zn	86.7 (6)
Ni—N2—C10—C9	-21.2 (11)	C24—N4—Ni—N1	72.8 (9)
C17—C16—C15—C14	-0.3 (13)	C28—N4—Ni—N1	-111.3 (10)
O2-C17-C12-C13	-178.6 (7)	C24—N4—Ni—N2	172.9 (9)

C16-C17-C12-C13	-0.2 (10)	C28—N4—Ni—N2	-11.2 (10)
O2-C17-C12-C11	-4.5 (11)	C24—N4—Ni—O2	-96.8 (9)
C16-C17-C12-C11	173.9 (7)	C28—N4—Ni—O2	79.2 (10)
O1—C1—C2—C3	-179.1 (8)	C24—N4—Ni—O1	-17.3 (9)
C6—C1—C2—C3	1.5 (12)	C28—N4—Ni—O1	158.7 (10)
C8—N1—C7—C6	-179.2 (8)	C24—N4—Ni—N3	-141 (6)
Ni—N1—C7—C6	-1.3 (12)	C28—N4—Ni—N3	35 (6)
C1—C6—C7—N1	-0.2 (14)	C24—N4—Ni—Zn	-57.0 (9)
C5-C6-C7-N1	-177.2 (9)	C28—N4—Ni—Zn	118.9 (10)
C7—N1—C8—C9	-144.4 (9)	O1—Zn—Ni—N1	-1.9 (3)
Ni—N1—C8—C9	37.5 (11)	O2—Zn—Ni—N1	-179.4 (4)
C16-C15-C14-C13	-0.9 (13)	I1—Zn—Ni—N1	87.9 (3)
C17—C12—C13—C14	-1.0 (12)	I2—Zn—Ni—N1	-93.1 (3)
C11—C12—C13—C14	-175.5 (8)	O1—Zn—Ni—N2	-179.5 (3)
C15-C14-C13-C12	1.6 (13)	O2—Zn—Ni—N2	3.0 (3)
C10-N2-C11-C12	-175.9 (8)	I1—Zn—Ni—N2	-89.7 (3)
Ni—N2—C11—C12	4.2 (12)	I2—Zn—Ni—N2	89.3 (3)
C13—C12—C11—N2	177.6 (8)	O1—Zn—Ni—O2	177.5 (3)
C17—C12—C11—N2	3.3 (13)	I1—Zn—Ni—O2	-92.8 (2)
C1—C6—C5—C4	1.0 (14)	I2—Zn—Ni—O2	86.3 (2)
C7—C6—C5—C4	178.3 (9)	O2—Zn—Ni—O1	-177.5 (3)
C28—N4—C24—C25	6.4 (18)	I1—Zn—Ni—O1	89.8 (2)
Ni—N4—C24—C25	-177.2 (10)	I2—Zn—Ni—O1	-91.2 (2)
C22-C21-C20-C19	-1.2 (13)	O1—Zn—Ni—N3	-92.8 (3)
C22—C21—C20—C23	-177.9 (10)	O2—Zn—Ni—N3	89.8 (3)
N2-C10-C9-C8	66.8 (11)	I1—Zn—Ni—N3	-2.99 (17)
N1-C8-C9-C10	-77.1 (12)	I2—Zn—Ni—N3	176.05 (17)
C18—N3—C22—C21	-0.2 (12)	O1—Zn—Ni—N4	89.6 (3)
Ni—N3—C22—C21	-177.9 (7)	O2—Zn—Ni—N4	-87.9 (3)
C20-C21-C22-N3	0.0 (13)	I1—Zn—Ni—N4	179.3 (2)
C21—C20—C19—C18	2.5 (13)	I2—Zn—Ni—N4	-1.6 (2)
C23—C20—C19—C18	179.1 (10)	C16—C17—O2—Zn	5.2 (10)
C1—C2—C3—C4	-0.2 (15)	C12—C17—O2—Zn	-176.5 (5)
C22—N3—C18—C19	1.5 (12)	C16—C17—O2—Ni	179.8 (5)
Ni—N3—C18—C19	179.2 (7)	C12—C17—O2—Ni	-1.9 (10)
C20-C19-C18-N3	-2.8 (14)	O1—Zn—O2—C17	174.1 (6)
C2—C3—C4—C5	-0.7 (17)	I1—Zn—O2—C17	-72.4 (6)
C6—C5—C4—C3	0.3 (16)	I2—Zn—O2—C17	60.9 (6)
C25—C26—C27—C28	-3(2)	Ni—Zn—O2—C17	175.8 (7)
C29—C26—C27—C28	178.5 (14)	O1—Zn—O2—Ni	-1.7 (2)
C27—C26—C25—C24	4.1 (18)	I1—Zn—O2—Ni	111.79 (17)
C29—C26—C25—C24	-176.9 (11)	I2—Zn—O2—Ni	-114.90 (16)
N4—C24—C25—C26	-7(2)	N1—Ni—O2—C17	-173.1 (12)
C24—N4—C28—C27	-5(2)	N2—Ni—O2—C17	6.5 (6)
Ni—N4—C28—C27	178.8 (13)	O1—Ni—O2—C17	-174.2 (6)
C26—C27—C28—N4	3(3)	N3—Ni—O2—C17	95.2 (6)
C7—N1—Ni—N2	-179.6 (7)	N4—Ni—O2—C17	-83.1 (6)
C8—N1—Ni—N2	-1.7 (7)	Zn—Ni—O2—C17	-175.8 (7)
C7—N1—Ni—O2	0.0 (19)	N1—Ni—O2—Zn	2.7 (15)

C8—N1—Ni—O2	177.9 (12)	N2—Ni—O2—Zn	-177.7 (3)
C7—N1—Ni—O1	1.0 (7)	O1—Ni—O2—Zn	1.6 (2)
C8—N1—Ni—O1	179.0 (6)	N3—Ni—O2—Zn	-88.9 (2)
C7—N1—Ni—N3	91.3 (7)	N4—Ni—O2—Zn	92.7 (3)
C8—N1—Ni—N3	-90.8 (6)	C6—C1—O1—Zn	-179.2 (5)
C7—N1—Ni—N4	-90.0 (7)	C2—C1—O1—Zn	1.4 (10)
C8—N1—Ni—N4	87.9 (6)	C6—C1—O1—Ni	-1.7 (10)
C7—N1—Ni—Zn	2.2 (8)	C2C1Ni	178.8 (5)
C8—N1—Ni—Zn	-179.8 (5)	O2—Zn—O1—C1	179.7 (6)
C11—N2—Ni—N1	172.7 (7)	I1—Zn—O1—C1	64.2 (6)
C10—N2—Ni—N1	-7.2 (7)	I2—Zn—O1—C1	-70.2 (6)
C11—N2—Ni—O2	-7.2 (7)	Ni—Zn—O1—C1	178.0 (7)
C10—N2—Ni—O2	172.9 (6)	O2—Zn—O1—Ni	1.7 (2)
C11—N2—Ni—O1	-11.0 (19)	I1—Zn—O1—Ni	-113.79 (16)
C10—N2—Ni—O1	169.1 (12)	I2—Zn—O1—Ni	111.85 (16)
C11—N2—Ni—N3	-95.5 (7)	N1—Ni—O1—C1	0.5 (6)
C10—N2—Ni—N3	84.5 (6)	N2—Ni—O1—C1	-175.9 (13)
C11—N2—Ni—N4	82.8 (7)	O2—Ni—O1—C1	-179.7 (6)
C10—N2—Ni—N4	-97.2 (6)	N3—Ni—O1—C1	-91.5 (6)
C11—N2—Ni—Zn	-9.1 (8)	N4—Ni—O1—C1	90.5 (6)
C10—N2—Ni—Zn	170.9 (5)	Zn—Ni—O1—C1	-178.1 (7)
C22—N3—Ni—N1	134.5 (6)	N1—Ni—O1—Zn	178.5 (3)
C18—N3—Ni—N1	-43.1 (7)	N2—Ni—O1—Zn	2.2 (15)
C22—N3—Ni—N2	34.4 (6)	O2—Ni—O1—Zn	-1.6 (2)
C18—N3—Ni—N2	-143.1 (7)	N3—Ni—O1—Zn	86.6 (2)
C22—N3—Ni—O2	-55.9 (6)	N4—Ni—O1—Zn	-91.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
C10—H10B…I1 ⁱ	0.97	3.03	3.981 (10)	166
C22—H22···N2	0.93	2.61	3.078 (10)	111
C28—H28…N2	0.93	2.51	3.086 (15)	120

Symmetry codes: (i) x+1/2, y-1/2, z.

Table 2

Table 2. Comparision of the some crystallographic properties of corresponding dinuclear complexes.

Compound $[M_t R_2 M_c]$	Space Group	$M_{\rm c} \cdots M_{\rm t} ({\rm \AA})$	M_{t} - R (Å)
(I)	Monoclinic Cc	3.0634 (13)	2.5320 (11)-2.5333 (10)
(II)	Monoclinic Cc	3.0738 (19)	2.3412 (18)-2.3628 (16)
(III)	Monoclinic Cc	3.0695 (11)	2.5303 (9)-2.5424 (9)
(IV)	Monoclinic $P2_1/c$	3.0757 (6)	2.208 (1)-2.208 (1)
(V)	Monoclinik $P2_1/n$	3.0800 (9)	2.3309 (9)-2.3508 (10)
(VI)	Monoclinic <i>P</i> 2 ₁	not_given	2.216 (4)-2.200 (4)
(VII)	Orthorhombic $P2_12_12_1$	3.0917 (15)	2.3356 (16)-2.3634 (15)
(VIII)	Orthorhombic $P2_12_12_1$	3.161 (1)	2.2163 (14)-2.2054 (14)
(IX)	Orthorhombic $P2_12_12_1$	3.1464 (16)	2.5373 (14)–2.5527 (14)

(X)	Triclinic P-1	3.5301 (8)	2.3430 (10)-2.325 (2)
(XI)	Triclinic P-1	3.4859 (7)	2.320 (2)–2.324 (2)

Notes: (II) $[ZnBr_2Ni(salpd^2)(DMF)_2]$ (Arıcı *et al.*, 2001); (III) $[ZnI_2Ni(salpd^2)(DMF)]$ (Tatar, 2002); (IV) $[ZnCl_2Cu(salpd^2)]$ (Tatar *et al.*, 1999); (V) $[ZnBr_2Cu(LDMH_2)(piperidine)]$ (Svoboda *et al.*, 2001); (VI) $[ZnCl_2Zn(salpd^2)(MeOH)]$ (Atakol, Tatar *et al.*, 1999); (VII) $[ZnBr_2Ni(salpd^2)(DMF)]$ (Tatar, Atakol, Arıcı, 2002); (VIII) $[ZnCl_2Zn(salpd^2)(DMF)]$ (Tatar, Atakol, Ülkü, 2002); (IX) $[ZnI_2Zn(salpd^2)(DMF)]$ (Arıcı & Aksu, 2002); (X) $[HgCl_2Cu(salpd^2)]$ (Atakol, Arıcı *et al.*, 1999); (XI) $[HgCl_2Ni(salpd^2)]$ Arıcı *et al.*, 2006). salpd²⁻ = *N*,*N*-bis(salicylidene)-1,3-propanediamine (C₁₇H₁₆N₂O₂), LDMH₂ = *N*,*N*-bis(salicylidene)-2,2'-dimethyl-1, 3-propanediamine (C₁₉H₂₂N₂O₂), DMF = dimethylformamide (C₃H₇NO), piperidine (C₅H₁₁N), methylpyridine (C₆H₇N).

